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Abstract For several of the proteins in the BioMagRes-

Bank larger than 200 residues, 60 % or fewer of the

backbone resonances were assigned. But how reliable are

those assignments? In contrast to complete assignments,

where it is possible to check whether every triple-reso-

nance Generalized Spin System (GSS) is assigned once and

only once, with incomplete data one should compare all

possible assignments and pick the best one. But that is not

feasible: For example, for 200 residues and an incomplete

set of 100 GSS, there are 1.6 9 10260 possible assign-

ments. In ‘‘EZ-ASSIGN’’, the protein sequence is divided

in smaller unique fragments. Combined with intelligent

search approaches, an exhaustive comparison of all possi-

ble assignments is now feasible using a laptop computer.

The program was tested with experimental data of a

388-residue domain of the Hsp70 chaperone protein DnaK

and for a 351-residue domain of a type III secretion

ATPase. EZ-ASSIGN reproduced the hand assignments. It

did slightly better than the computer program PINE

(Bahrami et al. in PLoS Comput Biol 5(3):e1000307, 2009)

and significantly outperformed SAGA (Crippen et al. in J

Biomol NMR 46:281–298, 2010), AUTOASSIGN (Zim-

merman et al. in J Mol Biol 269:592–610, 1997), and IBIS

(Hyberts and Wagner in J Biomol NMR 26:335–344,

2003). Next, EZ-ASSIGN was used to investigate how well

NMR data of decreasing completeness can be assigned. We

found that the program could confidently assign fragments

in very incomplete data. Here, EZ-ASSIGN dramatically

outperformed all the other assignment programs tested.

Keywords Large protein NMR � Computer

assignment � Assignment verification

Introduction

The development of triple resonance NMR methods for

assignments of the resonances of protein backbone nuclei in

the early 1990s (Montelione and Wagner 1990; Kay et al.

1990) has revolutionized solution protein NMR spectros-

copy. Currently, there are more than 5,000 proteins with

assignments listed in the BioMagResBank. This is a tre-

mendous achievement, but, as Table 1 shows, the vast

majority of these assigned proteins are smaller than 25 kDa

(200 residues) while the assignments for larger proteins are

rather incomplete. These facts are serious obstacles for de-

novo NMR structure determination for the majority of pro-

teins: In the human genome the median protein chain length

is 423 residues. However, partial assignments for such larger

systems are still extremely valuable for the study of protein–

protein and protein–ligand interactions, and for studies of

conformational/dynamical change and/or allostery as

deduced from chemical shift changes, paramagnetic relax-

ation enhancement, residual dipolar couplings and 15N

relaxation [for example, see Ref. (Bertelsen et al. 2009)].
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How reliable are such partial protein assignments? So

far, there has not been a way to assess this question with

confidence. In the case of (virtually) complete assignments,

it is possible to ensure that (almost) every peak in the triple

resonance data is assigned once and only once, that are

(almost) no unassigned peaks remain, and that (almost) no

unassigned residues remain. In addition, when complete

assignments are used for structure determination, one will

discover whether they are compatible with a reasonable

secondary structure. Regretfully, these tests are not avail-

able in cases of partial assignments, especially for proteins

of unknown structure. One may use residue-selective

labeling to help and/or assess partial assignments and/or

use NOESY, but this is not common practice. Systematic

mutagenesis is another valid, but labor intensive, approach

to guide and/or verify the assignments. Alternatively, one

may repeat the assignment process and assess whether a

given assignment is reproducible. Such a task is best

accomplished with a computer using a fast assignment

program. We recently presented such a program, called

SAGA (Crippen et al. 2010), which is fast enough to

complete a single assignment of a 400-residue protein in

about 30 s. The program uses a probabilistic branch-and-

bound algorithm that automatically repeats from randomly

chosen different starting conditions, keeping track of all

results. SAGA can produce and evaluate about 4,000 dif-

ferent assignments in 24 h. However, those 4,000 inde-

pendent assignments are nowhere near to astronomical

number of possibilities one would need to evaluate to be

certain that the correct assignment has been found.

In this report, triple resonance NMR data are referred to

as Generalized Spin Systems (GSS), as defined by Mont-

elione and co-workers (Moseley et al. 2001; Zimmerman

et al. 1997), i.e. a NH ‘‘root’’ with CA(i), CB(i), CO(i) and

CA(i - 1), CB(i - 1), CO(i - 1) ‘‘rungs’’. We do not

consider HA(i) and HA(i - 1) rungs, because triple

resonance data on larger proteins is obtained from per-

deuterated systems. To give a sense for the combinatorial

barrier to the assignment problem, consider the placement

of 100 GSS on 200 residues. One easily perceives that there

are 200 9 199 9 198 9_9 100 *1.6 9 10216 different

ways to do this and to exhaustively compare all possible

assignments.

Here, we present an approach that dramatically reduces

the combinatorial problem by placing GSS on smaller

segments. First, we scan the amino acid sequence for

stretches of residues that have a unique sequence. This is

equivalent to a typical ‘‘hand-assignment’’ approach: one

first assigns unique di- or tri-peptides, typically containing

amino acids such as alanine, serine, threonine and glycine

that can be easily recognized in the NMR data. In the hand

assignment, one extends these assignments by adding GSS

on both sides. However, in large proteins, there are not

many unique di- and tri-peptides to start with. Using a

computer, one can easily find and start fitting much larger

peptides such as decapeptides which are unique even in

large proteins. Unique deca-peptides cover virtually all

residues of these proteins. There are just 100 9 99 9

_991 = 6.3 9 1019 ways of picking 10 GSS out of a

collection of 100 to fit a particular unique deca-peptide. As

there are at most 190 unique deca-peptides in a 200 residue

protein, there are just 1.2 9 1021 possible assignments.

Combined with intelligent search approaches (see below),

an exhaustive comparison of all possible assignments is

feasible in a minute or less, using a laptop computer.

We have dubbed the computer program ‘‘EZ-ASSIGN’’.

After (several of) the unique deca-peptides have been

assigned, the corresponding sequence positions are masked

and the assigned GSS are taken out of the GSS pool. Next,

the remaining sequence is searched for unique nona-pep-

tides, which are assigned from the remaining GSS, etc., all

the way down to mono-peptides. A key virtue of this

Table 1 Completeness of the

NMR assignments in the BMRB

a Defined as the number of

assignments/number of residues

Residues in protein Occurrence in BMRB Completeness of assignmenta (%)

[90 80–90 70–80 60–70 \60

\51 440 167 69 79 51 67

51–100 1,628 1,199 278 67 21 53

101–150 2,006 1,469 366 107 22 45

151–200 698 456 151 43 14 30

201–250 205 73 78 31 7 14

251–300 114 53 27 14 7 13

301–350 32 11 8 8 1 4

351–400 24 12 4 1 1 6

401–450 9 0 1 4 0 4

451–500 3 0 1 0 0 2

[500 6 0 2 1 0 3
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approach is that more small peptides become unique after

larger peptide blocks have been assigned. In EZ-ASSIGN,

the user can control the number of required rung matches,

the rung match tolerance, the GSS-type classification ran-

ges, search mode, and several other parameters. Thus, a

user can design and optimize his/her own protocol, using

simple Unix input scripts. EZ-ASSIGN was calibrated

using the BMRB data for the 723-residue Malate Synthase

(BMRB ID: 5471).

We applied EZ-ASSIGN to the experimental data of two

large protein domains: Residues 1-388 of the E. coli Hsp70

chaperone protein DnaK, for which 70 % of the backbone

assignments were made by hand (Bertelsen et al. 2009),

and residues 105–456 of a type III secretive ATPase, for

which [90 % of the backbone assignments were made by

hand (P. Rossi, N. K. Khanra, and C. G. Kalodimos,

unpublished data). For these proteins, EZ-ASSIGN slightly

outperformed the fully automatic computer assignment

program PINE (Bahrami et al. 2009) but dramatically out-

performed the programs SAGA (Crippen et al. 2010),

AUTOASSIGN (Moseley et al. 2001) and IBIS (Hyberts

and Wagner 2003).

We investigated how well the different computer pro-

grams performed with NMR data of decreasing complete-

ness, which is common when working with large proteins

with limited sample concentration. Because EZ-ASSIGN

was expressly written for this situation, it can still confi-

dently assign fragments in severly degraded data, where the

other tested programs cannot.

Methods

Data preparation using Sparky

EZ-ASSIGN requires six input files: one for

HNCA(i) peaks, one for HNCA(i - 1) peaks, one for

HNCO(i) peaks, one for HNCO(i - 1) peaks, one for

HNCB(i) peaks and one for HNCB(i - 1) peaks. The files

may be empty. In each file, three columns of frequencies,

corresponding to the NH ‘‘root’’ and CA, CB, or CO

‘‘rungs’’, are provided. Optionally, columns listing peak

intensities and individual rung tolerances (the frequency

range allowed to define a matching rung between adjacent

GSS) are accepted. In addition, a sequence file is needed.

EZ-ASSIGN assumes that the numbers in the peak

labels (e.g. in Sparky format (Goddard and Kneller 2000))

in each of the six files refer to the same spin system. That

is, EZ-ASSIGN assumes that the GSS have been previously

constructed. In our experience, the protocol of constructing

GSS from crowded spectra of large proteins with limited

signal-to-noise requires decisions about noise recognition,

the effect of noise and overlap on peak shape and peak

position, that are much more reliably made by NMR

spectroscopists than computer programs.

Nevertheless, the release package of EZ-ASSIGN comes

with an independent program to help assemble the required

lists from raw Sparky-style peak pick lists if so desired.

A common problem in spectra of large proteins is the

presence of two or more GSS per NH coordinate: for just

two NH-overlapping GSS with complete rungs, there are

25 = 32 ways to create two complete GSSs. It is best to

leave such GSS out of the GSS pool at the beginning of the

assignments, and to assign them by hand at the end of the

EZ-ASSIGN procedure.

Key to the approach

There are *1.6 9 10216 different ways to place 100 GSS

on 200 residues, so there are an equal number of inde-

pendent assignments possible. In order to find the correct

one, one must evaluate how well the rungs between adja-

cent GSS match and whether the GSS are compatible with

the amino acid sequence. Previously proposed computer

assignment algorithms have approached this problem using

simulated annealing methods (Buchler et al. 1997), genetic

algorithms (Bahrami et al. 2009) and first-best (Moseley

et al. 2001) approaches. Unfortunately, the best assignment

can never be guaranteed by any of these procedures with-

out infinite trial time. However, it is possible to dramati-

cally reduce the number of permutations that must be tested

(and thus the trial time) by 1) considering short, unique

peptide sequences, 2) making use of the fact that the GSS

of seven different amino acid types can be distinguished in

triple resonance data (HNCACB) (see Table S1), and 3)

building the assignment sequentially from the N-terminus

of the unique target peptide. For example, in a 10-residue

target peptide beginning with alanine, it is unnecessary to

test downstream assignment possibilities for residues 2–10

without first identifying a GSS compatible with alanine at

position 1. In Table 2, we show that by considering only

appropriate choices for downstream evaluation, there are

just 7.8 9 1012 ways to match 100 GSS to a single deca-

peptide, and 1.5 9 1015 ways to do this for the overlapping

deca-peptides in a 200 residue sequence. Hence, with this

procedure, one can easily exhaust all possibilities even in

larger systems and a fully trustworthy assignment can be

obtained.

Description of the program

The program first assembles the six input files into a pool

of GSSs and selects the possible residue types for both

GSS(i) and for GSS(i - 1) Residue type is determined

using BMRB statistics for CA and CB resonances in dia-

magnetic proteins (see Table S2). Next, the protein
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sequence is translated into an ‘‘NMR sequence’’ based on

the same statistics. We evaluated three different transla-

tions as shown in Table S1. Subsequently, the program

starts from the N-terminus and identifies unique sequence

stretches (‘‘peptides’’) from 1 to 9 residues in length. The

program then searches the pool of available GSSs for

matches to the unique peptide, starting from the N-termi-

nus. For the N-terminal position, the program checks if the

(i - 1) rungs of the considered GSS, if available, are

compatible with the type of the preceding residue in the

complete sequence. If the preceding residue is assigned, the

program checks for rung matches and mismatches. Here,

and everywhere else in the program, any rung mismatch

results in an immediate rejection of that placement, no

matter how many other matching rungs are found. When a

candidate for the N-terminus of the search peptide is

identified, the program searches for a match to the next

sequence position in the search peptide. Successful

matches for this position must be of the correct amino acid

type and must match with the previous position given the

rung tolerances and required number of rungs. Rung tol-

erances may be set globally, but differently, for CA, CB

and CO rungs, or individually for each rung. If no match is

found for the second position, a new candidate is sought for

the N-terminal position, and the search for the second

position starts again. If a successful candidate is found for

the second position, the search continues to the third

position. If none is found, a new candidate for the second

place is sought. This process continues until all positions

have been filled with candidates or until all possibilities

have been exhausted. For the GSS placed on the C-termi-

nus of the peptide, the program checks if it is rung com-

patible with the N-terminus of a previously assigned

stretch, if applicable.

EZ-ASSIGN was not designed to be a fully automatic

assignment program. For example, the program does not

Table 2 Permutations of fitting

100 GSSs with known type to a

200-residue protein and shorter

peptides, not considering rung-

connections

The 200-residue protein would

contain 10 A, 10 T, 10 G, 10 S,

60 (D F I L N Y) and 90 (C E H

K M Q R V W) types

100 GSS would contain 5 Ala, 5

Thr, 5 Gly, 5 Ser, 30 (D F I L N

Y) and 45 (C E H K M Q R V

W) types

\Occurrence[
in 200 residues

\Occurrence [
in 100 GSSs

Permutations for

100 GSSs

Number

G 10 5 10 9 99_9 6 30,240

A 10 5 10 9 99_9 6 30,240

T 10 5 10 9 99_9 6 30,240

S 10 5 10 9 99_9 6 30,240

D F I L N Y 60 30 60 9 59 9_9 31 5.8 9 1047

C E H K M Q R V W 90 45 90 9 89 9_9 46 2.3 9 1080

Product: 10146

\Occurrence [
in 20 residues

\Occurrence[
in 100 GSSs

Permutations for

100 GSSs

Number

G 1 5 5 5

A 1 5 5 5

T 1 5 5 5

S 1 5 5 5

D F I L N Y 6 30 30 9 29 9_9 25 1.4 9 109

C E H K M Q R V W 9 45 45 9 44 9_9 37 3.2 9 1014

2.8 9 1026

Repeat for 199 20-residue

peptides

Product:

5.5 9 1028

\Occurrence [
in 10 residues

\Occurrence[
in 100 GSSs

Permutations

for 100 GSSs

Number

G 1 5 5 5

A 0 5 1 1

T 1 5 5 5

S 0 5 1 1

D F I L N Y 3 30 30 9 29 9 28 2.4 9 104

C E H K M Q R V W 5 45 45 9 44 9 43 9 42 9 41 1.3 9 107

7.8 9 1012

Repeat for 199 10-residue

peptides

Product:

1.5 9 1015
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check whether alternative assignments made for a single

peptide use a certain GSS several times or not. Rather, the

program lists all possibilities, and lists how many times

each GSS was used. It also does not check whether new

assignments made for different peptides are compatible

with each other, but lists them all. The user must then

select among assignments for the best match.

However, if so desired, one may run EZ-ASSIGN in an

automatic mode, in which the assignment output is auto-

matically parsed to retain only the last assignment of over-

lapping assignments. One may then use a script in which

that assignment is used a restraint for the following run.

EZ-ASSIGN was written in Fortran90. It was compiled

with a GNU compiler on an Apple Macbook Pro 2.4 GHz

Intel Core 2 Duo computer, running OSX.6.8. EZ-ASSIGN

evaluates all nona-peptides in the NMR data for malate

synthase within 10 s. With 735 residues and 654 assign-

ments, malate synthase is the largest protein assigned to

date; hence there does not appear to be a practical limit to

the applicability of EZ-ASSIGN.

Calibration

Calibration of word size, rung tolerance and chemical shift

ranges for the residue type identification was accomplished

using BMRB data bank data entry 5471 for Malate Syn-

thase. These data are virtually complete with six-rung GSSs

for nearly every amino acid. Due to its size (735 residues),

the Malate synthase data are a good representation of the

statistical variation in resonance positions in all proteins.

Chemical shift ranges

Statistics for CA and CB resonance ranges for different

amino acids, as listed in the BMRB, are shown in Table S2.

We found no benefit in including CO or N(H) resonance

statistics in the definition of amino acid type (not shown).

The BMRB also lists standard deviations for the variation

of CA and CB resonance positions per residue type. If the

BMRB distributions were Gaussian (they are not) one

should expect at least 30 % of the experimental data at

hand to lie outside of the standard deviations. Hence, we

used multiplication factors of the BMRB ranges to facili-

tate a complete assignment. Table S3 shows the perfor-

mance and reliability of EZ-ASSIGN on Malate synthase

as a function of CA and CB range multipliers. The tables

show that larger ranges can be used for larger peptide

searches than for smaller peptide searches.

Word size

Table S4 shows the performance of EZ-ASSIGN on Malate

synthase as a function of NMR word size and search

length, with other parameters as listed in the table caption.

Fewer unique peptides were found when using a 5-letter

translation than with a six or seven letter translation.

Typically, multiple assignments were found for the unique

peptides when word length was large. This was caused by

the fact that the same GSS can belong to several different

amino acid types, especially when using large multipliers

for the CA and CB resonance ranges. When considering

peptides longer than approximately 7 residues, there were

not large differences between 5-, 6- and 7-letter codes in

the number of unique peptides identified and assigned.

However, in real data, the bulk of the assignments were

obtained when searching for tetra- to hexa-peptides (see

below). From Table S4 it is clear that one can obtain many

more assignments for tetra- and hexa-peptides using 6 or 7

code without paying too much of a price for multiple

assignments.

Precision

Next, we addressed the influence of matching tolerance on

the assignment performance. EZ-ASSIGN uses a definition

that two rungs match if their chemical shifts differ by less

than the sum of their tolerances. With the artificial data for

malate synthase, identical results were obtained with tol-

erances between 0.02 and 0.05 ppm (Table S5). Setting the

tolerance to 0.1 to 0.15 ppm resulted in greater numbers of

incorrect assignments. Experimentally, we found that for a

sample of 250 uM triple labeled DnaK(1-388), a C-rung

tolerance of 0.05–0.08 ppm was optimal for most reso-

nances (see below).

Probability indicator

When searching for assignments requiring only one rung

per connectivity, typically many possible assignments are

found per trial peptide, especially when the type informa-

tion is lacking for many GSS. For long search peptides, the

number of valid assignments can then run in the thousands

per peptide. How to rank these possibilities in the output?

One can reasonably assume that assignment with the

largest total number of rung matches takes precedent over

one with fewer. An assignment which connects to a pre-

viously assigned stretch, either front or back or both, is

worth considering. If neither of these criteria resolve the

issues, one may also evaluate whether the resonance

intensities vary wildly over the assignment stretch or not.

We have also tested whether 13CA, 13CB and 13CO line

width information as provided by the Sparky peak pick

function can be used as a criterion to select between dif-

ferent possible assignments. However, we were not able to

obtain a meaningful correlation between a line width match

and a rung match for the large protein data considered.
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In severely incomplete data, there is a whole other

issue that needs to be considered: could better GSS have

been available in the ‘‘missing’’ data, even if a single

assignment was found in the available data? The proba-

bility of correctness of the provided assignment in the

context of missing data, must be a function of the density

of the NMR spectrum of typical protein spectra. For

instance, a CA(i)–CA(i - 1) rung match at 65 ppm in the

available data would likely not occur often in the missing

data, while a CA(i)–CA(i - 1) rung match at 55 ppm

could very well have many alternatives in the missing

data.

To illustrate EZ-ASSIGN’s approach to this issue, we

will assume a tetra-peptide which has a proposed assign-

ment based on a CA rung match between (i) and (i ? 1), a

CO rung match between (i ? 1) and (i ? 2) and a

CA ? CB rung match between (i ? 2) and (i ? 3). We

also assume that the protein has 350 theoretical GSS, but

that only 340 CO, 300 CA and 250 CB signals are

observed. EZ-ASSIGN calculates a probability for that

assignment to be correct as follows.

For the CA match it consults a database of all 600 CA

chemical shifts in the Malate Synthase assignments. The

program finds how many corresponding entries exist at that

shift with a range as given by the listed tolerances in the

experimental data. Suppose that there are 20 entries in the

Malate synthase data which fulfill these criteria. Hence, in

the 50 missing experimental CA one may expect

50/600 9 20 = 1.6 residue with a matching CA within the

tolerance range. Now the probability that the found CA

GSS connectivity in the observed data is correct, is given

by 1/(1 ? 1.6). Similarly, for the next CO rung match, EZ-

ASSIGN consults a database of all CO chemical shifts in

the Malate Synthase BRMB entry, and finds, for instance,

25. Hence, in the 10 missing experimental CO one may

expect 10/600 9 25 = 0.4 residue with a matching CO

within the tolerance range. Now, the probability that the

found CO GSS connectivity in the observed data is correct

is given by 1/(1 ? 0.4). If more than one connection is

found for a sequential match, a joint statistics, also based

on the Malate Synthase data is consulted (how many res-

idues are there with the combined CA and CB frequencies,

given the precision ranges). Suppose there are just 2 in

Malate synthase; we then expect 100/600 9 2 = 0.33 in

the missing CA/CB data, and the probability is 1/

(1 ? 0.33). The probability for the entire stretch is taken as

the product of the probabilities of the individual connec-

tivities. EZ-ASSIGN also has a joint statistics file for CA

and CO, and for CB and CO, as well as one for all three.

The program computes the probabilities for all pursued

assignments. The user can set a probability threshold that

will prevent the program from copying low-probability

assignments to the output.

Best protocol

We combined the calibrations above to arrive at the

assignment protocol as recommended in Table 3A, B. For

assignment of malate synthase, tau, DnaK, and type III

secretive ATPase, the protocol in Table 3A (searching for

unique peptides ? adjacent peptides) was consecutively

executed three times: once with three required rungs, once

with two required rungs and finally with one required rung.

The obtained assignments were used as restraints for the

next assignments. Next, we executed one or more runs

using a search mode in which all remaining peptides were

tested, whether they were unique or not (scanning mode 1,

see Table 3B). This latter search may pick up assignments

that were previously missed because the preceding residue

type is not included in the search for unique peptides. Such

a scanning mode run can be done with the same ranges as

in Table 3A. One may also combine the scanning mode

runs with increased CA and CB ranges in order to also

capture assignments for residues that lie far outside the

BRMB statistics.

Several variations and extensions of this protocol are

possible. One may at the end want to include a run with

larger rung tolerances to capture assignments for GSS with

low S/N for which the resonance position is not so pre-

cisely defined. Or, one may execute the entire protocol of

Table 3A, B first with only those GSS for which type-

information is available, followed by the entire protocol

Table 3 Recommended assignment protocol, (A) Search mode 3,

(B) Search mode 1

Search length Word length Alpha range Beta range

(A)

9 7 3.0 3.5

8 7 2.7 3.2

7 7 2.6 2.8

6 7 2.5 2.5

5 7 2.25 2.25

4 7 2.0 2.0

3 5 1.75 1.75

2 5 1.50 1.50

(B)

5 7 2.5 2.5

4 7 2.5 2.5

3 5 2.5 2.5

2 5 2.5 2.5

1 5 2.5 2.5

1 5 4.0 4.0

a Search mode 3: unique peptides and peptides adjacent to previously

assigned peptides
b Search mode 1: all peptides, whether unique or not

184 J Biomol NMR (2013) 57:179–191
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including all data. Lastly, one may create a protocol which

completely simulates a hand assignment: start by assigning

unique tri-peptides, and extend them by one GSS at a time.

Use of other software packages

The input lists used for EZ-ASSIGN were used for SAGA

(Crippen et al. 2010) without change. For PINE (Bahrami

et al. 2009) and AUTOASSIGN (Moseley et al. 2001), the

HNCA(i) and HNCA(i - 1) peak files used for EZ-

ASSIGN were combined into a HNCA file, the HNCA(i),

HNCA(i - 1), HNCB(i) and HNCB(i - 1) peak files into

a HNCACB file, the HNCA(i - 1) and HNCB(i - 1) peak

files into a HNCOCACB file, and the HNCO(i) peaks, and

HNCO(i - 1) peaks into a HNCACO file. The HNCA(i - 1)

peak file served as a HNCOCA file and the HNCO(i - 1)

peak file as a HNCO file. Peak labels were removed in all

files. In these files the N–H coordinates for the corre-

sponding cross peaks are identical. The files do not contain

GSS with identical NH coordinates. The files were uploa-

ded on the PINE and AUTOASSIGN webservers. Dr.

S. Hyberts (Harvard) was kind enough to assign the PINE

files using the program IBIS (Hyberts and Wagner 2003).

Availability

EZ-ASSIGN source code, with several utility programs,

examples and manuals, is available for download from the

University of Michigan Technology Transfer Department

(http://inventions.umich.edu/technologies/5729/ez-assign-

fortran-source-code-for-nmr-resonance-assignments). The

use of the program is unlimited in time and scope, free of

charge for academia and non-profits, but bound to rules set

forth in a license agreement that can also be found at that

website.

Results

Synthetic data

The progress of the assignment of all 723 residues of

Malate synthase is illustrated for the first 180 residues in

Fig. 1. The bulk of the assignments were obtained in the

run searching for nona-peptides with GSS connected by

three rungs. Nevertheless, runs with decreasing numbers of

rung connections and increasing range tolerances were

necessary to complete the assignment. The final EZ-

ASSIGN assignment, shown in column E1 of Fig. 1, is

equivalent to the literature assignment, except for a missing

assignment for D159. It is important to note is that residues

not assigned in the literature data were not assigned by EZ-

ASSIGN either.

The column marked ‘‘S’’ is an assignment of the same

GSS data as obtained by using a 30 min SAGA run. While

SAGA makes no errors, the assignment is less complete

then the one obtained with EZ-ASSIGN. The column

marked ‘‘P’’ is an assignment by using the PINE web

server; and the column marked ‘‘AA’’ is an assignment by

using the AUTOASSIGN webserver.

The column labeled ‘‘Y’’ shows an assignment obtained

with EZ-ASSIGN when using the same unassembled GSS

just as in PINE and AUTOASSIGN. The GSS were re-

assembled using a series of protocols using a series of GSS

matching scripts and programs that are part of the EZ-

ASSIGN release. Furthermore, in run ‘‘Y’’, EZ-ASSIGN

used the automatic protocol in which the output of the

individual steps was used as restraints for the next steps

without human intervention, as described above. The result

was 614 correct assignments and 38 incorrect assignments,

corresponding to a 6 % error rate (see Table 4).

EZ-ASSIGN was used in automatic mode using pre-

assembled GSS to address the question as to what type of

NMR data are most critical to the assignment of the spectra

of large proteins. Removing all CO(i) rungs from the

Malate Synthase dataset resulted in 563 correct assign-

ments with 35 errors, while removing all CB(i - 1) rungs

yielded in 412 correct assignments with 135 errors (results

not shown). Comparing these results with assignment using

all rungs (614 correct assignments and 38 incorrect) sug-

gests that the HN(CA)CO experiment is almost superflu-

ous, even for proteins of this size. This finding suggests

that experimental time is better spent obtaining as many as

possible CB(i - 1) rungs by running the HNCACB longer.

For those interested in comparison of the performances

of fully automatic assignment procedures without human

intervention, such as AUTOASSIGN and PINE, with EZ-

ASSIGN, column Y is the fair comparison. It appears that

PINE is superior to EZ-ASSIGN in the automatic mode,

while AUTOASSIGN and EZ-ASSIGN in automatic mode

are comparable. However, EZ-ASSIGN was not conceived

to be a fully automatic program, and as we will demon-

strate below, dramatically outperforms PINE, AUTOAS-

SIGN, SAGA and IBIS on incomplete experimental data.

We have not included MARS (Jung and Zweckstetter

2004) in our comparison because that program’ s web-

server does not accept CO rung data. Table 4 lists the final

results for Malate Synthase.

Currently, there is much interest in assigning natively

unfolded proteins. The BMRB lists an assignment for 99 of

the residues of human tau (11–124), based on HNCACB,

HNCOCACB, HNCA and HNCOCA data. The progress of

the complete and error free assignment by EZ-ASSIGN is

shown in Figure 2. EZ-ASSIGN, when run in the interac-

tive mode, also for this case outperforms all other computer

assignment programs tried (see Table 4).
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Real data

Our group has been working on Hsp70 protein folding

chaperones for many years. These 70 kDa monomeric

proteins have four domains: a nucleotide-binding domain

(NBD; residues 1–390) a substrate-binding domain (SBD

residues 400–500), LID (residues 510–610) and TAIL

(residues 611–650) (e.g. see (Mayer and Bukau 2005;

Zuiderweg et al. 2013)). For the Hsp70 of E. coli, called

DnaK, assignments for all individually expressed domains

were made by hand using standard suites of six triple

resonance experiments, using a samples of *250 lM in

protein and using a 800 MHz Varian spectrometer with

cryoprobe (Bertelsen et al. 2009). No NOE data were used.

Here we use the spectral peak pick data of triple-labeled

NBD(1–388) for tests with EZ-ASSIGN. This NBD has a

rotational correlation time of 20 ns at 30 �C (Bertelsen

et al. 2009).

For assignment using EZ-ASSIGN, GSS with overlap-

ping NH coordinates were removed from the DnaK data.

Further, the data were idealized for the N and H coordi-

nates; i.e. the NH coordinates of all corresponding cross

peaks were made identical, in order to facilitate the GSS

assembly by PINE, AUTOASSIGN and IBIS. This did not

influence EZ-ASSIGN as that program does not use NH

coordinates. Figure 3 shows the progress of the assignment

of all 388 residues using the protocols of Table 3A, B as

described above. For clarity, only part of the assignment is

shown. The progress of the assignment is quite different

than that for synthetic data: here most assignments are

A B C D E S P AA Y A B C D E S P AA Y A B C D E S P AA Y
9 8 7 6 5 4 3 2 8 7 6 5 4 3 1 4 3 2 1 3 2 1 9 8 7 6 5 4 3 2 8 7 6 5 4 3 1 4 3 2 1 3 2 1 9 8 7 6 5 4 3 2 8 7 6 5 4 3 1 4 3 2 1 3 2 1

M 1 Q 61 A 121
S 2 A 62 M 122
Q 3 A 63 N 123
T 4 L 64 A 124
I 5 D 65 R 125
T 6 E 66 Y 126
Q 7 W 67 A 127
S 8 H 68 L 128
R 9 R 69 N 129
L 10 S 70 A 130
R 11 N 71 A 131
I 12 P 72 N 132
D 13 G 73 A 133
A 14 P 74 R 134
N 15 V 75 W 135
F 16 K 76 G 136
K 17 D 77 S 137
R 18 K 78 L 138
F 19 A 79 Y 139
V 20 A 80 D 140
D 21 Y 81 A 141
E 22 K 82 L 142
E 23 S 83 Y 143
V 24 F 84 G 144
L 25 L 85 S 145
P 26 R 86 D 146
G 27 E 87 I 147
T 28 L 88 I 148
G 29 G 89 P 149
L 30 Y 90 Q 150
D 31 L 91 E 151
A 32 V 92 G 152
A 33 P 93 A 153
A 34 Q 94 M 154
F 35 P 95 V 155
W 36 E 96 S 156
H 37 R 97 D 157
N 38 V 98 Y 158
V 39 T 99 D 159
D 40 V 100 P 160
E 41 E 101 Q 161
I 42 T 102 R 162
V 43 T 103 G 163
H 44 G 104 E 164
D 45 I 105 Q 165
L 46 D 106 V 166
A 47 S 107 I 167
P 48 E 108 A 168
E 49 I 109 W 169
N 50 T 110 V 170
R 51 S 111 R 171
Q 52 Q 112 R 172
L 53 A 113 F 173
L 54 G 114 L 174
A 55 P 115 D 175
E 56 Q 116 E 176
R 57 L 117 S 177
D 58 V 118 L 178
R 59 V 119 P 179
I 60 P 120 L 180

Fig. 1 The progress of the re-assignment of the triple resonance data

of Malate Synthase (BMRB 5471) using EZ-ASSIGN. For legibility

only the first 180 residues are shown. The available assignments are

shown in green on the sequence in the left two columns. Grey fields

are Pro residues. The columns A9-A2 report progress using the

protocol of Table 3A, requiring 3 rungs connectivities, assigning

unique peptides in 7-letter code. Columns B8-B3 show the results of

the same protocol requiring 2 rungs, and column C1 the results of the

same protocol requiring 1 rungs. Columns D4-1 used the protocol of

Table 3B, requiring 1 rung, unique mode. Columns E3-1 used the

protocol of Table 3B, requiring 1 rung, scanning mode. Missing

columns, such as C9-2, attest to the fact that no new assignments were

found for those searches after those obtained by run B3. Green fields

show assignment corresponding to the BRMB file, red ones those that

do not. The column labeled ‘‘S’’ is the assignment obtained with

SAGA. The column labeled ‘‘P’’ is the assignment obtained with

PINE. The column labeled ‘‘AA’’ is the assignment obtained with

AUTOASSIGN. The column labeled ‘‘Y’’ shows an ‘‘automatic’’

assignment obtained with EZ-ASSIGN, in which the output of the

individual steps A–E was used as restraints for the next steps without

human intervention. This run also used unassembled GSS just as in

PINE and AUTOASSIGN. Also see Table 4

Table 4 Computer assignments of literature data of Malate Synthase

and TAU(11–124)

Method MALATE

SYNTHASE

(BMR5471)

TAU(11–124,

BMR17945)

Identical Different Identical Different

Literature 653 99

EZ-ASSIGN interactive 652 0 99 0

PINE 647 4 91 1

SAGA 569 0 88 2

AUTOASSIGN 563 12 31 1

EZ-ASSIGN automatic 614 38 79 9
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found while looking for hexa-to-tetra peptides. Also in the

figure are the assignments as obtained by SAGA, PINE,

AUTOASSIGN and IBIS. As is shown in Table 5 in the

column ‘‘ALL’’, EZ-ASSIGN, in interactive mode, makes

the largest number of correct assignments and differs only

by one assignment, which turns out to be a mistake in the

hand assignment data. PINE is a close second best with

many correct assignments and only 9 errors. The other

columns in Table 5 will be discussed below.

To explore whether there is something unique about the

data of DnaK that may confuse the previously published

assignment programs, we also used experimental data for

residues 105–456 of a type III secretive ATPase 13, for

which [90 % of the backbone assignments were obtained

by hand using triple resonance data and NOESY spectra (P.

Rossi, N. K. Khanra and C. G. Kalodimos, unpublished

data). As Table 6 shows, EZ-ASSIGN is not perfect for this

data set, but outperforms the other available programs by

an even larger margin. The 17 differences between the EZ

and hand assignment are shown in Table S8, and are

extensively discussed in the legend to that table. According

to the criteria used, the differences are all in favor of the

EZ-assignment; it is not that the hand assignments are

impossible, but less likely from the triple resonance data

alone. Additional data from NOESY spectra have tilted the

assignment towards the hand assignment.

Assignments with degraded experimental data

Every assignment program has been tested with inten-

tionally degraded data. However, performance depends

much how one degrades data: for obvious reasons,

deleting a series of connected GSS will have quite a

different effect than deleting every other GSS. To avoid a

subjective degradation protocol, we chose to degrade the

DnaK data using actual intensity or S/N information. By

deleting individual cross peaks under a certain S/N

threshold, this approach simulated data that were recorded

in less time, recorded on a less concentrated sample or

recorded on a larger protein. By using the same S/N

A D P S AA A D P S AA A D P S AA
9 8 7 6 4 3 2 3 1 9 8 7 6 4 3 2 3 1 9 8 7 6 4 3 2 3 1

R 11 M 50 S 89
T 12 P 51 K 90
P 13 D 52 C 91
S 14 L 53 G 92
L 15 K 54 S 93
P 16 N 55 K 94
T 17 V 56 D 95
X 18 K 57 N 96
P 19 S 58 I 97
T 20 K 59 K 98
R 21 I 60 H 99
E 22 G 61 V 100
P 23 S 62 P 101
K 24 T 63 G 102
K 25 E 64 G 103
V 26 N 65 G 104
A 27 L 66 S 105
V 28 K 67 V 106
V 29 H 68 Q 107
R 30 Q 69 I 108
T 31 P 70 V 109
X 32 G 71 Y 110
P 33 G 72 K 111
K 34 G 73 P 112
S 35 K 74 V 113
P 36 V 75 D 114
S 37 Q 76 L 115
S 38 I 77 S 116
A 39 I 78 K 117
K 40 N 79 V 118
S 41 K 80 T 119
R 42 K 81 S 120
L 43 L 82 K 121
Q 44 D 83 S 122
T 45 L 84 G 123
A 46 S 85 S 124
P 47 N 86
V 48 V 87
P 49 Q 88

Fig. 2 The progress of the re-assignment of the triple resonance data

of human Tau (11–124) (BMRB 17945) using EZ-ASSIGN. The

available assignments, based on CA and CB rungs only, are shown in

green on the sequence in the left two columns. Grey fields are Pro

residues. The columns A9-A2 report progress using the protocol of

Table 3A, requiring 2 rungs connectivities, assigning unique peptides

in 7-letter code. Columns D3-1 used the protocol of Table 3B,

requiring 1 rung, scanning mode. Missing columns, such as B9-2 and

C9-2 attest to the fact that no new assignments were found for those

searches after those obtained by run A2. Green fields show

assignment corresponding to the BMRB file, red ones those that do

not. The column labeled ‘‘P’’ is the assignment obtained with PINE.

The column labeled ‘‘S’’ is the assignment obtained with SAGA. The

column labeled ‘‘AA’’ is the assignment obtained with AUTOAS-

SIGN. Also see Table 4
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A B D S P AA I A B D S P AA I A B D S P AA I
9 6 5 4 3 9 8 7 6 5 4 2 3 2 1 9 6 5 4 3 9 8 7 6 5 4 2 3 2 1 9 6 5 4 3 9 8 7 6 5 4 2 3 2 1

K 121 L 181 V 241
K 122 D 182 E 242
M 123 K 183 E 243
K 124 G 184 F 244
K 125 T 185 K 245
T 126 G 186 K 246
A 127 N 187 D 247
E 128 R 188 Q 248
D 129 T 189 G 249
Y 130 I 190 I 250
L 131 A 191 D 251
G 132 V 192 L 252
E 133 Y 193 R 253
P 134 D 194 N 254
V 135 L 195 D 255
T 136 G 196 P 256
E 137 G 197 L 257
A 138 G 198 A 258
V 139 T 199 M 259
I 140 F 200 Q 260
T 141 D 201 R 261
V 142 I 202 L 262
P 143 S 203 K 263
A 144 I 204 E 264
Y 145 I 205 A 265
F 146 E 206 A 266
N 147 I 207 E 267
D 148 D 208 K 268
A 149 E 209 A 269
Q 150 V 210 K 270
R 151 D 211 I 271
Q 152 G 212 E 272
A 153 E 213 L 273
T 154 K 214 S 274
K 155 T 215 S 275
D 156 F 216 A 276
A 157 E 217 Q 277
G 158 V 218 Q 278
R 159 L 219 T 279
I 160 A 220 D 280
A 161 T 221 V 281
G 162 N 222 N 282
L 163 G 223 L 283
E 164 D 224 P 284
V 165 T 225 Y 285
K 166 H 226 I 286
R 167 L 227 T 287
I 168 G 228 A 288
I 169 G 229 D 289
N 170 E 230 A 290
E 171 D 231 T 291
P 172 F 232 G 292
T 173 D 233 P 293
A 174 S 234 K 294
A 175 R 235 H 295
A 176 L 236 M 296
L 177 I 237 N 297
A 178 N 238 I 298
Y 179 Y 239 K 299
G 180 L 240 V 300

Fig. 3 The progress of the assignment of the experimental triple

resonance data3 of DnaK using EZ-ASSIGN. For legibility only

residues 121–300 are shown. The available assignments are shown in

green on the sequence in the left two columns. Grey fields are Pro

residues. The columns A report progress using the protocol of

Table 3A, requiring 3 rungs connectivities, assigning unique peptides

in 7-letter code. The columns B report progress using the protocol of

Table 3A, requiring 2-rungs connectivities, assigning unique peptides

in 7-letter code. Columns D used the protocol of Table 3B, requiring

1 rung, scanning mode. Missing columns, such as C9-2 attest to the

fact that no new assignments were found for those searches after those

obtained by run B2. Green fields show assignment corresponding to

the BRMB file, red ones those that do not. The column labeled ‘‘P’’ is

the assignment obtained with PINE. The column labeled ‘‘S’’ is the

assignment obtained with SAGA. The column labeled ‘‘AA’’ is the

assignment obtained with AUTOASSIGN. The column labeled ‘‘I’’ is

the assignment obtained with IBIS. The shown assignments corre-

spond to the column entry ‘‘ALL’’ in Table 5

Table 5 DNAK NBD (1–388) RESULTS

Method Alla SN [ 20b SN [ 30 SN [ 30c SN [ 30d SN [ 40 SN [ 50 SN [ 60

Hand 294

EZ-ASSIGNe 293/1 239/3 142/6 115/8 108/4 103/21 46/5 11/0

Pinee 291/9 281/63 232/82 163/63 Error Error

SAGAe 241/6 150/3 119/14 53/5 32/7 49/25

AUTOASSIGN 202/9 55/0 39/1 14/0 12/0 5/1

IBISe 261/86 n.a. n.a. n.a. n.a. n.a.

Results are listed as total number/number different as compared to the hand assignment
a Using all data as used by the hand assignment—the actual spectra contained more peaks
b Taking only data with S/N ratio above listed threshold (see Table S6)
c NO CO(i) rungs
d NO CB(i - 1) rungs
e Only taking assignments with [50 % probability
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threshold on all spectra, HNCACO cross peaks were lost

much earlier than HNCO cross peaks, also in keeping with

reality.

Table S6 shows how the selection process affected the

data statistics for DnaK. Selecting peaks with SN [ 20

caused a substantial change in the number of CB(i - 1)-

rungs (231–166) while the number of other connectivities

did not change much. Table 5 shows that this change

resulted in a loss of 54 assignments in EZ-ASSIGN, 90 in

SAGA and 150 in AUTOASSIGN. PINE lost only 10

assignments, but made 60 additional errors. So even with a

small a reduction in data quality, we found that AUTO-

ASSIGN became unusable because it made too few

assignments, and that PINE became unreliable because it

made too many errors. IBIS was not further pursued

because of its less-than-ideal performance on the full data

set. The only fully automatic program that remained reli-

able while still making a large number of assignments was

SAGA, but it cannot compete with EZ-ASSIGN when it

was run with human intervention. The trend persisted as the

data were further degraded.

We again asked the question whether this assignment

behavior was peculiar to the data of DnaK. For the Type III

ATPase, the first degradation step also mainly caused a loss

in CB(i - 1) rungs (Table S7), and also resulted in

AUTOASSIGN to ‘‘drop out’’ and PINE to make too many

errors (Table 6).

Discussion

The results in Tables 5 and 6 demonstrate that EZ-

ASSIGN, when run in an interactive way, is a reliable tool

to obtain assignments for large proteins.

In case of complete data such as for Malate Synthase,

the EZ-assignment is basically finished at the deca-peptide

search level. For incomplete data such as for DnaK, only a

few of the unique deca-peptides can be assigned because of

missing GSS and/or rungs. Here the bulk of the assignment

occurs at the hexa-tetra peptide level. For those hexa-tetra

peptides for which an assignment is found, the assignment

must be robust: the sequence to which the GSS are fitted

was chosen to be unique, and matches with all reasonable

GSS were surveyed.

If more than one assignment is found for a sequence

with well-defined GSS types, it must represent a second

conformation in slow exchange. When the GSS types are

not well defined, the scientist can possibly distinguish

between two or more assignments based on the total

number of rung connections, the completeness of type

identification, the number of times a GSS was used, whe-

ther the peak intensities are roughly equal or not, and the

assignment probability factor. If neither of these criteria

can resolve the case, all assignments for that peptide must

be set aside until more data becomes available (e.g. NO-

ESY, HNCANH (Frueh et al. 2009), or HNCAHA/

HNCOCAHA).

PINE and EZ-ASSIGN performed about equally well for

the reasonably complete data of DnaK (74 % of expected

HNCACB peaks) and the type III ATPase (85 % of

expected HNCACB peaks). In those cases, PINE may be

the assignment program of choice as it runs in fully auto-

matic mode via a webserver. AUTOASSIGN, IBIS and

SAGA did not perform as well on the data of these

proteins.

However, when the data were only a little less complete,

EZ-ASSIGN clearly outperformed PINE (and all other

programs). EZ-ASSIGN obtained assignments in the data

with SN [ 50 and SN [ 60 (Table 5) with a 85 % confi-

dence when PINE did not yield a single assignment.

Interestingly, in the latter cases AUTOASSIGN and SAGA

are better than PINE, but not nearly as good as EZ-

ASSIGN. EZ-ASSIGN’s ability to find reliable assign-

ments in very incomplete data can be directly attributed to

Table 6 Results for type III secretive ATPase(105–456)

Method Alla Deg1b Deg2 Deg3 Deg4

HAND 317

EZ-ASSIGNc 298/17 216/37 134/31 66/7 28/0

Pinec 304/41 265/73 251/125 174/111 Error

SAGAc 130/20 109/34 70/19 29/10 21/7

AUTOASSIGN 123/6 64/22 18/2 7/0 0

Results are listed as total number/number different as compared to the

hand assignment
a Using all data as used by the hand assignment—the actual spectra

contained more peaks
b Only using data above increasingly higher thresholds (See Table

S7)
c Only taking assignments with [50 % probability

Table 7 Parameters for a linear least-square fit of the number of

correct assignment versus the total number of rung matches as

identified in left column

Rung

matches

DnaK(1–388) ATPase(105–456)

Slope Y-

intercept

R2 Slope Y-

intercept

R2

1 ? 2 ? 3 0.59 51 0.975 0.7 113 0.93

2 ? 3 0.7 34 0.993 0.86 24 0.988

1 ? 3 0.47 51 0.978 0.27 92 0.788

1 ? 2 0.01 93 0.005 0.27 110 0.518

3 0.58 -4 0.966 0.43 3 0.97

2 0.12 38 0.587 0.43 21 0.967

1 -0.11 54 0.633 -0.16 89 0.36
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the strategy of dividing the sequence into smaller unique

fragments. In EZ-ASSIGN there is no direct competition

from the large fraction of unassigned regions for the same

GSS.

As documented in Tables 5 and 6, we show that the

assignment deteriorates remarkably rapidly upon slight

data degradation. For instance, when the number of

HNCACB peaks was only one half of the original, only

ALL SN>20 SN>30 SN>40 SN>50 SN>60
a b c s a b c s a b c s a b c s a b c s a b c s

L 181 1 1 1 1
D 182 1 1 2 1 1 2
K 183 1 1 2 1 1 1 3 1 1 1 1 2
G 184 1 1 1 3 1 1 1 3 1 1 1 3 1 1 2
T 185 1 1 2 1 1 2 1 1 2 1 1
G 186 1 1 1 3 1 1 2 1 1 2 1 1 1 1 1 1
N 187 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1
R 188 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 2
T 189 1 1 1 3 1 1 1 3 1 1 1 3 1 1
I 190 1 1 1 3 1 1 1 1
A 191 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1
V 192 1 1 2 1 1 2 1 1 1 1 1 1 1 1
Y 193 1 1 1 3 1 1 1 3 1 1 2
D 194 1 1 1 3 1 1 1 3 1 1 2 1 1
L 195
G 196
G 197
G 198
T 199
F 200
D 201 1 1 2 1 1 2 1 1
I 202 1 1 2 1 1 2 1 1
S 203 1 1 1 3 1 1 1 3 1 1 2
I 204 1 1 2 1 1 2 1 1 1 1 1 1
I 205 1 1 1 3 1 1 1 3 1 1 1 3 1 1 2 1 1 1 1
E 206 1 1 1 3 1 1 1 3 1 1 1 3 1 1
I 207 1 1 1 3 1 1 1 3 1 1 2 1 1 2 1 1
D 208 1 1 1 3 1 1 1 3 1 1 1 3 1 1 2 1 1
E 209 1 1 1 3 1 1 1 3 1 1 1 3 1 1 2 1 1 2 1 1 2
V 210 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 2
D 211 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 2 1 1
G 212 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3
E 213 1 1 1 1 1 1 1 1 1 1
K 214 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3
T 215 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3
F 216 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 2
E 217 1 1 1 3 1 1 1 3 1 1 1 3 1 1 2 1 1
V 218 1 1 1 3 1 1 1 3 1 1 1 3 1 1 1 3 1 1 2 1 1 2
L 219 1 1 1 3 1 1 1 3 1 1 2 1 1 1 1 1 1
A 220 1 1 1 3 1 1 2
T 221 1 1 1 3 1 1 2 1 1 2 1 1 2 1 1 2 1 1
N 222 1 1 1 3 1 1 1 3 1 1 2 1 1
G 223 1 1 1 3
D 224 1 1 2 1 1 1 1 1 1 1 1 1 1
T 225 1 1 1 3 1 1 2 1 1 2 1 1 2 1 1 2 1 1
H 226 1 1 2 1 1
L 227 1 1 1 3 1 1 2 1 1 2 1 1 1 1 1 1
G 228 1 1 1 3 1 1 1 3
G 229 1 1 2 1 1 1 1

Fig. 4 Graph showing rung statistics and EZ-ASSIGN assignments

for degraded experimental NMR data of DnaK. Only residues

181–229 are shown for reasons of legibility. The obtained assign-

ments are shown in green (correct) or red (wrong). The column

labeled ‘‘a’’ indicates presence of CA rung connection, the column

labeled ‘‘b’’ indicates presence of CB rung connection, the column

labeled ‘‘c’’ indicates presence of CO rung connection. The column

labeled ‘‘s’’ gives the total number of rung connections and is color

coded yellow for one, cyan for two, and blue for three rung

connections. See also Tables 5 and S6
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about 60 out of the earlier 300 assignments for DnaK were

found (Table 5). What is the reason for this very non-linear

behavior? The results in Table 7 suggest that assignment

success was best correlated with the sum of available two-

rung and 3-run matches (i.e. the slope of the best fit is

closest to unity). Figure 4 shows, at the residue level, how

the assignment of a region of DnaK is affected by losses in

rungs. The assignment was in most cases lost or became

incorrect when the number of matching rungs per GSS pair

was less than 2. Since the CA match is almost always

present, the success of obtaining an assignment depends on

the availability of either a CB or a CO rung.

Table 5 shows that the removal of all CO(i) or of all

CB(i - 1) rungs caused a loss of 30 % of the assignments

of the data with SN [ 30. Hence, the experiments are

equivalent in context of assignment efficiency, even for

real incomplete data in large proteins. This strongly sug-

gests that one may best utilize limited instrument time by

collecting a very good HNCACB, rather than spending

time collecting a HNCACO spectrum. But that strategy

will likely leave many uncertainties in the assignments of

glycines which have no CB rung and typically very little

CA chemical shift dispersion. Whether that is acceptable

depends on the object of the assignment project.
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